传统控制策略 (1) 恒压频比控制 带定子压降补偿的恒压频比控制保证了同步电动机气隙磁通恒定,调节频率给定实现同步改变电机的转速。此种控制策略为开环控制,只控制了电机的气隙磁通,不能调节转矩,容易产生转子振荡和失步等问题。同时由于恒压频比控制依据的是电机的稳态模型,其动态控制性能不高,不适合具有高性能要求的伺服驱动控制场合。 为了获得良好的动态性能,必须依据电机的动态数学模型。由于交流永磁同步电动机动态数学模型是非线性、强耦合、时变的多变量系统。要得到良好的控制性能,需对角速度和电流进行解耦控制,即矢量控制技术。 (2) 经典pid控制 pid控制器就是利用比例、积分、微分对系统的误差进行计算得出控制量从而对被控对象进行控制。pid控制器是目前应用最为广泛的调节器,具有结构简单、稳定性好、工作可靠、调整方便等优点,一直以来是工业控制的主要技术之一,能够满足多数伺服控制应用领域。 但是经典的交流伺服同步电动机的三环pid调节控制方式仍然存在一些问题,如调节器参数整定繁琐且误差较大,对系统模型及参数的依赖性较强等,在一些高精度应用场合,很难满足系统要求。 (3) 磁场定向控制(id=0) 矢量控制是建立在被控对象准确的数学模型上,使交流电机控制由外部宏观稳态控制深入到电机内部电磁过程的瞬态控制。矢量控制通过坐标变换将交流电机内部复杂耦合的非线性变量变换为相对坐标系为静止的直流变量(电流、磁链、电压等),实现近似解耦控制,并从中找到约束条件,获得某一目标的最佳控制策略,id=0控制是矢量控制的一种特定的控制策略,在转子坐标系内实现永磁同步电机交直轴电流解耦,由于id、iq双电流闭环的存在,使电机iq电流动态跟随系统力矩给定(te=ktiq,kt为电机力矩系数),实现电机电磁力矩控制。该控制策略使电机系统具有较好输出力矩线性度,并可获得最大线性转矩。同时由于全部电流均用来产生电磁力矩,可以充分利用电机过载能力,提高电机启、制动速度,保证电机具有优良的启、制动性能。 矢量控制技术经历二十多年研究完善历程,在调速系统中应用所获得的性能优异,不论在低速(恒转矩控制模式)还是在高速(恒功率控制模式),其抗扰特性、启制动特性、稳速特性均达到或者超过直流调速系统。但是矢量控制模型及算法比较复杂,实现时需要进行坐标变换等,很难保证电机系统的电压、电流在直、交轴的完全解耦,进而会影响电机系统的动态和效率等指标。现代控制策略 传统的交流伺服电机驱动控制策略多用于被控对象模型确定、不变化且为线性,以及操作条件、运行环境确定不变的条件下。但交流永磁同步电动机动态数学模型是非线性、强耦合、时变的多变量系统,在高性能要求的场合,就必须考虑各种非线性的影响、对象的结构与参数变化、运行环境的改变以及环境干扰等时变和不确定性因素。现代控制理论的发展与应用,一定程度上弥补了经典控制理论对时变非线性随机系统无能为力的缺点。 (1) 直接转矩控制直接转矩控制理论是在20世纪80年代由德国鲁尔大学m.depenbrock教授和日本学者i.takahash分别提出的一种高性能的交流电机控制策略,其控制策略也是基于被控对象精确的数学模型,但是与矢量控制不同,它直接在定子坐标系下分析交流电动机的数学模型,无需复杂的坐标变换。采用定子磁场定向,无需解耦电流,转矩和磁链都采用直接反馈的双位式砰砰控制,避免了将定子电流分解成转矩和励磁分量,直接对逆变器的开关状态进行最佳控制,着眼于转矩的快速响应,以获得转矩的高动态性能。直接转矩控制磁场定向所用的是定子磁链,不受转子参数的影响,只要知道定子电阻就可以把它观测出来,对电机参数不敏感。 直接转矩控制技术在感应电动机变频控制领域获得了成功应用,瑞典abb公司已推出系列产品。但目前在永磁同步电动机应用方面,直接转矩控制还存在着一些问题。直接转矩控制采用磁链滞环,电机转矩存在脉动,直接影响电机运行的平稳性。直接转矩控制需要观测磁链和转矩,低速情况下准确性很差,致使电机低速运行性能差、电机调速范围较小。由于电机定子电感较小,电机启动和负载变动时电流冲击大,磁链和转矩脉动大。此外,由于电机静止时无法估算磁链初始位置,电机启动困难。尽管近些年国内外一些学者不断尝试和改进永磁同步电动机转矩直接控制策略,但目前这种控制方案很难满足交流伺服驱动技术要求。 (2) 滑模变结构控制 变结构控制属于非线性控制范畴,其非线性表现为控制的不连续性,即一种使系统的“结构”变化的开关特性。滑模变结构控制不需要知道系统的数学模型,只需要了解系统参数及其变化的大致范围,使得变结构控制具有快速响应、对参数及扰动变化不敏感、无需在线辩识与设计等优点,具有降阶、解耦的功能,当系统进入滑模状态时,系统状态的转移就不再受系统原有的参数变化和外部扰动的影响,而是强制在开关平面附近滑动,具有完全的自适应性和鲁棒性,因而滑模变控制在永磁同步电机伺服系统中得到了成功的应用。但由于采用的是bang-bang控制,不可避免的造成抖振问题,而抖振问题是滑模变结构控制广泛应用的一个主要困难。目前在交流伺服电机系统中通过改变滑模结构,如采用高阶滑模结构及滤波处理等方法一定程度上解决了滑模变结构控制带来的抖振问题。 (3) 自适应控制 自适应控制是50年代初由考德威尔(golcl-well)提出的。它将反馈控制与辨识理论相结合,针对被控对象特性的变化、漂移和环境干扰对系统的影响而提出来的,或者当对被控过程的参数了解不多或这些参数在正常运行期间有变化,特别是存在缓慢的变化因素时,通过寻求某些性能指标最优来完成对被控对象调节的。 现在应用于控制的自适应方法有模型参考自适应、参数辩识自校正控制及其新发展的各种非线性自适应控制。模型参考自适应控制系统不需要控制对象的精确数学模型,也无须进行参数辨识。其关键问题是设计自适应参数调整律,在保证系统稳定性的同时使误差信号趋于零,主要优点是容易实现和自适应速度快。但自适应算法存在一些问题,如数学模型和运算繁琐,使控制系统复杂化。又如参数辩识和校正都需要一段时间,对于参数变化较快的系统,控制性能受系统计算速度影响较大。在交流伺服驱动中应用系统硬件需要较高,一般采用32位数字信号处理器(dsp)或现场可编程门阵列(fpga)来实现。声明:本文为转载类文章,如涉及版权问题,请及时联系我们删除(QQ: 229085487),不便之处,敬请谅解!